Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Boosting Weakly-Supervised Image Segmentation via Representation, Transform, and Compensator (2309.00871v1)

Published 2 Sep 2023 in cs.CV

Abstract: Weakly-supervised image segmentation (WSIS) is a critical task in computer vision that relies on image-level class labels. Multi-stage training procedures have been widely used in existing WSIS approaches to obtain high-quality pseudo-masks as ground-truth, resulting in significant progress. However, single-stage WSIS methods have recently gained attention due to their potential for simplifying training procedures, despite often suffering from low-quality pseudo-masks that limit their practical applications. To address this issue, we propose a novel single-stage WSIS method that utilizes a siamese network with contrastive learning to improve the quality of class activation maps (CAMs) and achieve a self-refinement process. Our approach employs a cross-representation refinement method that expands reliable object regions by utilizing different feature representations from the backbone. Additionally, we introduce a cross-transform regularization module that learns robust class prototypes for contrastive learning and captures global context information to feed back rough CAMs, thereby improving the quality of CAMs. Our final high-quality CAMs are used as pseudo-masks to supervise the segmentation result. Experimental results on the PASCAL VOC 2012 dataset demonstrate that our method significantly outperforms other state-of-the-art methods, achieving 67.2% and 68.76% mIoU on PASCAL VOC 2012 val set and test set, respectively. Furthermore, our method has been extended to weakly supervised object localization task, and experimental results demonstrate that our method continues to achieve very competitive results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube