Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Let the Models Respond: Interpreting Language Model Detoxification Through the Lens of Prompt Dependence (2309.00751v1)

Published 1 Sep 2023 in cs.CL

Abstract: Due to LLMs' propensity to generate toxic or hateful responses, several techniques were developed to align model generations with users' preferences. Despite the effectiveness of such methods in improving the safety of model interactions, their impact on models' internal processes is still poorly understood. In this work, we apply popular detoxification approaches to several LLMs and quantify their impact on the resulting models' prompt dependence using feature attribution methods. We evaluate the effectiveness of counter-narrative fine-tuning and compare it with reinforcement learning-driven detoxification, observing differences in prompt reliance between the two methods despite their similar detoxification performances.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.