Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing (2309.00296v1)

Published 1 Sep 2023 in cs.RO, cs.AI, and cs.LG

Abstract: Reinforcement Learning (RL) has emerged as a transformative approach in the domains of automation and robotics, offering powerful solutions to complex problems that conventional methods struggle to address. In scenarios where the problem definitions are elusive and challenging to quantify, learning-based solutions such as RL become particularly valuable. One instance of such complexity can be found in the realm of car racing, a dynamic and unpredictable environment that demands sophisticated decision-making algorithms. This study focuses on developing and training an RL agent to navigate a racing environment solely using feedforward raw lidar and velocity data in a simulated context. The agent's performance, trained in the simulation environment, is then experimentally evaluated in a real-world racing scenario. This exploration underlines the feasibility and potential benefits of RL algorithm enhancing autonomous racing performance, especially in the environments where prior map information is not available.

Summary

We haven't generated a summary for this paper yet.