Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multistage DPG time-marching scheme for nonlinear problems (2309.00069v2)

Published 31 Aug 2023 in math.NA and cs.NA

Abstract: In this article, we employ the construction of the time-marching Discontinuous Petrov-Galerkin (DPG) scheme we developed for linear problems to derive high-order multistage DPG methods for non-linear systems of ordinary differential equations. The methodology extends to abstract evolution equations in Banach spaces, including a class of nonlinear partial differential equations. We present three nested multistage methods: the hybrid Euler method and the two- and three-stage DPG methods. We employ a linearization of the problem as in exponential Rosenbrock methods, so we need to compute exponential actions of the Jacobian that change from time steps. The key point of our construction is that one of the stages can be post-processed from another without an extra exponential step. Therefore, the class of methods we introduce is computationally cheaper than the classical exponential Rosenbrock methods. We provide a full convergence proof to show that the methods are second, third, and fourth-order accurate, respectively. We test the convergence in time of our methods on a 2D + time semi-linear partial differential equation after a semidiscretization in space.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.