Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Variational Physics-Informed Neural Networks (2308.16910v3)

Published 31 Aug 2023 in math.NA and cs.NA

Abstract: We introduce a Robust version of the Variational Physics-Informed Neural Networks method (RVPINNs). As in VPINNs, we define the quadratic loss functional in terms of a Petrov-Galerkin-type variational formulation of the PDE problem: the trial space is a (Deep) Neural Network (DNN) manifold, while the test space is a finite-dimensional vector space. Whereas the VPINN's loss depends upon the selected basis functions of a given test space, herein, we minimize a loss based on the discrete dual norm of the residual. The main advantage of such a loss definition is that it provides a reliable and efficient estimator of the true error in the energy norm under the assumption of the existence of a local Fortin operator. We test the performance and robustness of our algorithm in several advection-diffusion problems. These numerical results perfectly align with our theoretical findings, showing that our estimates are sharp.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.