Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Constructing Indoor Region-based Radio Map without Location Labels (2308.16759v2)

Published 31 Aug 2023 in cs.LG and eess.SP

Abstract: Radio map construction requires a large amount of radio measurement data with location labels, which imposes a high deployment cost. This paper develops a region-based radio map from received signal strength (RSS) measurements without location labels. The construction is based on a set of blindly collected RSS measurement data from a device that visits each region in an indoor area exactly once, where the footprints and timestamps are not recorded. The main challenge is to cluster the RSS data and match clusters with the physical regions. Classical clustering algorithms fail to work as the RSS data naturally appears as non-clustered due to multipaths and noise. In this paper, a signal subspace model with a sequential prior is constructed for the RSS data, and an integrated segmentation and clustering algorithm is developed, which is shown to find the globally optimal solution in a special case. Furthermore, the clustered data is matched with the physical regions using a graph-based approach. Based on real measurements from an office space, the proposed scheme reduces the region localization error by roughly 50% compared to a weighted centroid localization (WCL) baseline, and it even outperforms some supervised localization schemes, including k-nearest neighbor (KNN), support vector machine (SVM), and deep neural network (DNN), which require labeled data for training.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube