Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lower Bounds on the Complexity of Mixed-Integer Programs for Stable Set and Knapsack (2308.16711v2)

Published 31 Aug 2023 in cs.DM, cs.DS, and math.OC

Abstract: Standard mixed-integer programming formulations for the stable set problem on $n$-node graphs require $n$ integer variables. We prove that this is almost optimal: We give a family of $n$-node graphs for which every polynomial-size MIP formulation requires $\Omega(n/\log2 n)$ integer variables. By a polyhedral reduction we obtain an analogous result for $n$-item knapsack problems. In both cases, this improves the previously known bounds of $\Omega(\sqrt{n}/\log n)$ by Cevallos, Weltge & Zenklusen (SODA 2018). To this end, we show that there exists a family of $n$-node graphs whose stable set polytopes satisfy the following: any $(1+\varepsilon/n)$-approximate extended formulation for these polytopes, for some constant $\varepsilon > 0$, has size $2{\Omega(n/\log n)}$. Our proof extends and simplifies the information-theoretic methods due to G\"o\"os, Jain & Watson (FOCS 2016, SIAM J. Comput. 2018) who showed the same result for the case of exact extended formulations (i.e. $\varepsilon = 0$).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com