Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Lower Bounds on the Complexity of Mixed-Integer Programs for Stable Set and Knapsack (2308.16711v2)

Published 31 Aug 2023 in cs.DM, cs.DS, and math.OC

Abstract: Standard mixed-integer programming formulations for the stable set problem on $n$-node graphs require $n$ integer variables. We prove that this is almost optimal: We give a family of $n$-node graphs for which every polynomial-size MIP formulation requires $\Omega(n/\log2 n)$ integer variables. By a polyhedral reduction we obtain an analogous result for $n$-item knapsack problems. In both cases, this improves the previously known bounds of $\Omega(\sqrt{n}/\log n)$ by Cevallos, Weltge & Zenklusen (SODA 2018). To this end, we show that there exists a family of $n$-node graphs whose stable set polytopes satisfy the following: any $(1+\varepsilon/n)$-approximate extended formulation for these polytopes, for some constant $\varepsilon > 0$, has size $2{\Omega(n/\log n)}$. Our proof extends and simplifies the information-theoretic methods due to G\"o\"os, Jain & Watson (FOCS 2016, SIAM J. Comput. 2018) who showed the same result for the case of exact extended formulations (i.e. $\varepsilon = 0$).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube