Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for Semi-Supervised Medical Image Segmentation (2308.16573v3)

Published 31 Aug 2023 in eess.IV and cs.CV

Abstract: While supervised learning has achieved remarkable success, obtaining large-scale labeled datasets in biomedical imaging is often impractical due to high costs and the time-consuming annotations required from radiologists. Semi-supervised learning emerges as an effective strategy to overcome this limitation by leveraging useful information from unlabeled datasets. In this paper, we present a novel semi-supervised learning method, Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation (DCPA), for medical image segmentation. We devise a consistency regularization to promote consistent representations during the training process. Specifically, we use distinct decoders for student and teacher networks while maintain the same encoder. Moreover, to learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels. Both techniques contribute to enhancing the performance of the proposed method. The method is evaluated on three representative medical image segmentation datasets. Comprehensive comparisons with state-of-the-art semi-supervised medical image segmentation methods were conducted under typical scenarios, utilizing 10% and 20% labeled data, as well as in the extreme scenario of only 5% labeled data. The experimental results consistently demonstrate the superior performance of our method compared to other methods across the three semi-supervised settings. The source code is publicly available at https://github.com/BinYCn/DCPA.git.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub