Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust GAN inversion (2308.16510v1)

Published 31 Aug 2023 in cs.CV and eess.IV

Abstract: Recent advancements in real image editing have been attributed to the exploration of Generative Adversarial Networks (GANs) latent space. However, the main challenge of this procedure is GAN inversion, which aims to map the image to the latent space accurately. Existing methods that work on extended latent space $W+$ are unable to achieve low distortion and high editability simultaneously. To address this issue, we propose an approach which works in native latent space $W$ and tunes the generator network to restore missing image details. We introduce a novel regularization strategy with learnable coefficients obtained by training randomized StyleGAN 2 model - WRanGAN. This method outperforms traditional approaches in terms of reconstruction quality and computational efficiency, achieving the lowest distortion with 4 times fewer parameters. Furthermore, we observe a slight improvement in the quality of constructing hyperplanes corresponding to binary image attributes. We demonstrate the effectiveness of our approach on two complex datasets: Flickr-Faces-HQ and LSUN Church.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.