Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

PASA: A Priori Adaptive Splitting Algorithm for the Split Delivery Vehicle Routing Problem (2308.16446v1)

Published 31 Aug 2023 in eess.SY, cs.SY, and math.OC

Abstract: The split delivery vehicle routing problem (SDVRP) is a relaxed variant of the capacitated vehicle routing problem (CVRP) where the restriction that each customer is visited precisely once is removed. Compared with CVRP, the SDVRP allows a reduction in the cost of the routes traveled by vehicles. The exact methods to solve the SDVRP are computationally expensive. Moreover, the complexity and difficult implementation of the state-of-the-art heuristic approaches hinder their application in real-life scenarios of the SDVRP. In this paper, we propose an easily understandable and effective approach to solve the SDVPR based on an a priori adaptive splitting algorithm (PASA). The idea of a priori split strategy was first introduced in Chen et al. (2017). In this approach, the demand of the customers is split into smaller values using a fixed splitting rule in advance. Consequently, the original SDVRP instance is converted to a CVRP instance which is solved using an existing CVRP solver. While the proposed a priori splitting rule in Chen et al. (2017) is fixed for all customers regardless of their demand and location, we suggest an adaptive splitting rule that takes into account the distance of the customers to the depot and their demand values. Our experiments show that PASA can generate solutions comparable to the state-of-the-art but much faster. Furthermore, our algorithm outperforms the fixed a priori splitting rule proposed by Chen et al. (2017).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.