Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Separate and Locate: Rethink the Text in Text-based Visual Question Answering (2308.16383v1)

Published 31 Aug 2023 in cs.CV and cs.MM

Abstract: Text-based Visual Question Answering (TextVQA) aims at answering questions about the text in images. Most works in this field focus on designing network structures or pre-training tasks. All these methods list the OCR texts in reading order (from left to right and top to bottom) to form a sequence, which is treated as a natural language ``sentence''. However, they ignore the fact that most OCR words in the TextVQA task do not have a semantical contextual relationship. In addition, these approaches use 1-D position embedding to construct the spatial relation between OCR tokens sequentially, which is not reasonable. The 1-D position embedding can only represent the left-right sequence relationship between words in a sentence, but not the complex spatial position relationship. To tackle these problems, we propose a novel method named Separate and Locate (SaL) that explores text contextual cues and designs spatial position embedding to construct spatial relations between OCR texts. Specifically, we propose a Text Semantic Separate (TSS) module that helps the model recognize whether words have semantic contextual relations. Then, we introduce a Spatial Circle Position (SCP) module that helps the model better construct and reason the spatial position relationships between OCR texts. Our SaL model outperforms the baseline model by 4.44% and 3.96% accuracy on TextVQA and ST-VQA datasets. Compared with the pre-training state-of-the-art method pre-trained on 64 million pre-training samples, our method, without any pre-training tasks, still achieves 2.68% and 2.52% accuracy improvement on TextVQA and ST-VQA. Our code and models will be released at https://github.com/fangbufang/SaL.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub