Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Unified Analysis on the Subgradient Upper Bounds for the Subgradient Methods Minimizing Composite Nonconvex, Nonsmooth and Non-Lipschitz Functions (2308.16362v2)

Published 30 Aug 2023 in math.OC and cs.LG

Abstract: This paper presents a unified analysis for the proximal subgradient method (Prox-SubGrad) type approach to minimize an overall objective of $f(x)+r(x)$, subject to convex constraints, where both $f$ and $r$ are weakly convex, nonsmooth, and non-Lipschitz. Leveraging on the properties of the Moreau envelope of weakly convex functions, we are able to relate error-bound conditions, the growth conditions of the subgradients of the objective, and the behavior of the proximal subgradient iterates on some remarkably broad classes of objective functions. Various existing as well as new bounding conditions are studied, leading to novel iteration complexity results. The terrain of our exploration expands to stochastic proximal subgradient algorithms.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.