Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Inductive Logic Programming meets Reinforcement Learning (2308.16210v1)

Published 30 Aug 2023 in cs.LG, cs.LO, and cs.SC

Abstract: One approach to explaining the hierarchical levels of understanding within a machine learning model is the symbolic method of inductive logic programming (ILP), which is data efficient and capable of learning first-order logic rules that can entail data behaviour. A differentiable extension to ILP, so-called differentiable Neural Logic (dNL) networks, are able to learn Boolean functions as their neural architecture includes symbolic reasoning. We propose an application of dNL in the field of Relational Reinforcement Learning (RRL) to address dynamic continuous environments. This represents an extension of previous work in applying dNL-based ILP in RRL settings, as our proposed model updates the architecture to enable it to solve problems in continuous RL environments. The goal of this research is to improve upon current ILP methods for use in RRL by incorporating non-linear continuous predicates, allowing RRL agents to reason and make decisions in dynamic and continuous environments.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.