Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

IIDM: Inter and Intra-domain Mixing for Semi-supervised Domain Adaptation in Semantic Segmentation (2308.15855v2)

Published 30 Aug 2023 in cs.CV

Abstract: Despite recent advances in semantic segmentation, an inevitable challenge is the performance degradation caused by the domain shift in real applications. Current dominant approach to solve this problem is unsupervised domain adaptation (UDA). However, the absence of labeled target data in UDA is overly restrictive and limits performance. To overcome this limitation, a more practical scenario called semi-supervised domain adaptation (SSDA) has been proposed. Existing SSDA methods are derived from the UDA paradigm and primarily focus on leveraging the unlabeled target data and source data. In this paper, we highlight the significance of exploiting the intra-domain information between the labeled target data and unlabeled target data. Instead of solely using the scarce labeled target data for supervision, we propose a novel SSDA framework that incorporates both Inter and Intra Domain Mixing (IIDM), where inter-domain mixing mitigates the source-target domain gap and intra-domain mixing enriches the available target domain information, and the network can capture more domain-invariant features. We also explore different domain mixing strategies to better exploit the target domain information. Comprehensive experiments conducted on the GTA5 to Cityscapes and SYNTHIA to Cityscapes benchmarks demonstrate the effectiveness of IIDM, surpassing previous methods by a large margin.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube