Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection (2308.15846v1)

Published 30 Aug 2023 in cs.CV

Abstract: In this paper, we for the first time explore helpful multi-modal contextual knowledge to understand novel categories for open-vocabulary object detection (OVD). The multi-modal contextual knowledge stands for the joint relationship across regions and words. However, it is challenging to incorporate such multi-modal contextual knowledge into OVD. The reason is that previous detection frameworks fail to jointly model multi-modal contextual knowledge, as object detectors only support vision inputs and no caption description is provided at test time. To this end, we propose a multi-modal contextual knowledge distillation framework, MMC-Det, to transfer the learned contextual knowledge from a teacher fusion transformer with diverse multi-modal masked LLMing (D-MLM) to a student detector. The diverse multi-modal masked LLMing is realized by an object divergence constraint upon traditional multi-modal masked LLMing (MLM), in order to extract fine-grained region-level visual contexts, which are vital to object detection. Extensive experiments performed upon various detection datasets show the effectiveness of our multi-modal context learning strategy, where our approach well outperforms the recent state-of-the-art methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.