Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

MSGNN: Multi-scale Spatio-temporal Graph Neural Network for Epidemic Forecasting (2308.15840v1)

Published 30 Aug 2023 in cs.LG, cs.AI, physics.soc-ph, and q-bio.PE

Abstract: Infectious disease forecasting has been a key focus and proved to be crucial in controlling epidemic. A recent trend is to develop forecast-ing models based on graph neural networks (GNNs). However, existing GNN-based methods suffer from two key limitations: (1) Current models broaden receptive fields by scaling the depth of GNNs, which is insuffi-cient to preserve the semantics of long-range connectivity between distant but epidemic related areas. (2) Previous approaches model epidemics within single spatial scale, while ignoring the multi-scale epidemic pat-terns derived from different scales. To address these deficiencies, we devise the Multi-scale Spatio-temporal Graph Neural Network (MSGNN) based on an innovative multi-scale view. To be specific, in the proposed MSGNN model, we first devise a novel graph learning module, which directly captures long-range connectivity from trans-regional epidemic signals and integrates them into a multi-scale graph. Based on the learned multi-scale graph, we utilize a newly designed graph convolution module to exploit multi-scale epidemic patterns. This module allows us to facilitate multi-scale epidemic modeling by mining both scale-shared and scale-specific pat-terns. Experimental results on forecasting new cases of COVID-19 in United State demonstrate the superiority of our method over state-of-arts. Further analyses and visualization also show that MSGNN offers not only accurate, but also robust and interpretable forecasting result.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube