Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Style Transfer for Robust Policy Optimization in Deep Reinforcement Learning (2308.15550v1)

Published 29 Aug 2023 in cs.LG and cs.AI

Abstract: This paper proposes an algorithm that aims to improve generalization for reinforcement learning agents by removing overfitting to confounding features. Our approach consists of a max-min game theoretic objective. A generator transfers the style of observation during reinforcement learning. An additional goal of the generator is to perturb the observation, which maximizes the agent's probability of taking a different action. In contrast, a policy network updates its parameters to minimize the effect of such perturbations, thus staying robust while maximizing the expected future reward. Based on this setup, we propose a practical deep reinforcement learning algorithm, Adversarial Robust Policy Optimization (ARPO), to find a robust policy that generalizes to unseen environments. We evaluate our approach on Procgen and Distracting Control Suite for generalization and sample efficiency. Empirically, ARPO shows improved performance compared to a few baseline algorithms, including data augmentation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.