Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

FPT Approximation and Subexponential Algorithms for Covering Few or Many Edges (2308.15546v1)

Published 29 Aug 2023 in cs.DS

Abstract: We study the \textsc{$\alpha$-Fixed Cardinality Graph Partitioning ($\alpha$-FCGP)} problem, the generic local graph partitioning problem introduced by Bonnet et al. [Algorithmica 2015]. In this problem, we are given a graph $G$, two numbers $k,p$ and $0\leq\alpha\leq 1$, the question is whether there is a set $S\subseteq V$ of size $k$ with a specified coverage function $cov_{\alpha}(S)$ at least $p$ (or at most $p$ for the minimization version). The coverage function $cov_{\alpha}(\cdot)$ counts edges with exactly one endpoint in $S$ with weight $\alpha$ and edges with both endpoints in $S$ with weight $1 - \alpha$. $\alpha$-FCGP generalizes a number of fundamental graph problems such as \textsc{Densest $k$-Subgraph}, \textsc{Max $k$-Vertex Cover}, and \textsc{Max $(k,n-k)$-Cut}. A natural question in the study of $\alpha$-FCGP is whether the algorithmic results known for its special cases, like \textsc{Max $k$-Vertex Cover}, could be extended to more general settings. One of the simple but powerful methods for obtaining parameterized approximation [Manurangsi, SOSA 2019] and subexponential algorithms [Fomin et al. IPL 2011] for \textsc{Max $k$-Vertex Cover} is based on the greedy vertex degree orderings. The main insight of our work is that the idea of greed vertex degree ordering could be used to design fixed-parameter approximation schemes (FPT-AS) for $\alpha > 0$ and the subexponential-time algorithms for the problem on apex-minor free graphs for maximization with $\alpha > 1/3$ and minimization with $\alpha < 1/3$.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.