Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Meta-learning for model-reference data-driven control (2308.15458v1)

Published 29 Aug 2023 in eess.SY and cs.SY

Abstract: One-shot direct model-reference control design techniques, like the Virtual Reference Feedback Tuning (VRFT) approach, offer time-saving solutions for the calibration of fixed-structure controllers for dynamic systems. Nonetheless, such methods are known to be highly sensitive to the quality of the available data, often requiring long and costly experiments to attain acceptable closed-loop performance. These features might prevent the widespread adoption of such techniques, especially in low-data regimes. In this paper, we argue that the inherent similarity of many industrially relevant systems may come at hand, offering additional information from plants that are similar (yet not equal) to the system one aims to control. Assuming that this supplementary information is available, we propose a novel, direct design approach that leverages the data from similar plants, the knowledge of controllers calibrated on them, and the corresponding closed-loop performance to enhance model-reference control design. More specifically, by constructing the new controller as a combination of the available ones, our approach exploits all the available priors following a meta-learning philosophy, while ensuring non-decreasing performance. An extensive numerical analysis supports our claims, highlighting the effectiveness of the proposed method in achieving performance comparable to iterative approaches, while at the same time retaining the efficiency of one-shot direct data-driven methods like VRFT.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.