Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Enhancing Mobile Face Anti-Spoofing: A Robust Framework for Diverse Attack Types under Screen Flash (2308.15346v1)

Published 29 Aug 2023 in cs.CV and cs.AI

Abstract: Face anti-spoofing (FAS) is crucial for securing face recognition systems. However, existing FAS methods with handcrafted binary or pixel-wise labels have limitations due to diverse presentation attacks (PAs). In this paper, we propose an attack type robust face anti-spoofing framework under light flash, called ATR-FAS. Due to imaging differences caused by various attack types, traditional FAS methods based on single binary classification network may result in excessive intra-class distance of spoof faces, leading to a challenge of decision boundary learning. Therefore, we employed multiple networks to reconstruct multi-frame depth maps as auxiliary supervision, and each network experts in one type of attack. A dual gate module (DGM) consisting of a type gate and a frame-attention gate is introduced, which perform attack type recognition and multi-frame attention generation, respectively. The outputs of DGM are utilized as weight to mix the result of multiple expert networks. The multi-experts mixture enables ATR-FAS to generate spoof-differentiated depth maps, and stably detects spoof faces without being affected by different types of PAs. Moreover, we design a differential normalization procedure to convert original flash frames into differential frames. This simple but effective processing enhances the details in flash frames, aiding in the generation of depth maps. To verify the effectiveness of our framework, we collected a large-scale dataset containing 12,660 live and spoof videos with diverse PAs under dynamic flash from the smartphone screen. Extensive experiments illustrate that the proposed ATR-FAS significantly outperforms existing state-of-the-art methods. The code and dataset will be available at https://github.com/Chaochao-Lin/ATR-FAS.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.