Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Second-order methods for quartically-regularised cubic polynomials, with applications to high-order tensor methods (2308.15336v2)

Published 29 Aug 2023 in math.OC, cs.NA, and math.NA

Abstract: There has been growing interest in high-order tensor methods for nonconvex optimization, with adaptive regularization, as they possess better/optimal worst-case evaluation complexity globally and faster convergence asymptotically. These algorithms crucially rely on repeatedly minimizing nonconvex multivariate Taylor-based polynomial sub-problems, at least locally. Finding efficient techniques for the solution of these sub-problems, beyond the second-order case, has been an open question. This paper proposes a second-order method, Quadratic Quartic Regularisation (QQR), for efficiently minimizing nonconvex quartically-regularized cubic polynomials, such as the AR$p$ sub-problem [3] with $p=3$. Inspired by [35], QQR approximates the third-order tensor term by a linear combination of quadratic and quartic terms, yielding (possibly nonconvex) local models that are solvable to global optimality. In order to achieve accuracy $\epsilon$ in the first-order criticality of the sub-problem in finitely many iterations, we show that the error in the QQR method decreases either linearly or by at least $\mathcal{O}(\epsilon{4/3})$ for locally convex iterations, while in the nonconvex case, by at least $\mathcal{O}(\epsilon)$; thus improving, on these types of iterations, the general cubic-regularization bound. Preliminary numerical experiments indicate that two QQR variants perform competitively with state-of-the-art approaches such as ARC (also known as AR$p$ with $p=2$), achieving either a lower objective value or iteration counts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.