Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Linearly convergent nonoverlapping domain decomposition methods for quasilinear parabolic equations (2308.15314v1)

Published 29 Aug 2023 in math.NA and cs.NA

Abstract: We prove linear convergence for a new family of modified Dirichlet--Neumann methods applied to quasilinear parabolic equations, as well as the convergence of the Robin--Robin method. Such nonoverlapping domain decomposition methods are commonly employed for the parallelization of partial differential equation solvers. Convergence has been extensively studied for elliptic equations, but in the case of parabolic equations there are hardly any convergence results that are not relying on strong regularity assumptions. Hence, we construct a new framework for analyzing domain decomposition methods applied to quasilinear parabolic problems, based on fractional time derivatives and time-dependent Steklov--Poincar\'e operators. The convergence analysis is conducted without assuming restrictive regularity assumptions on the solutions or the numerical iterates. We also prove that these continuous convergence results extend to the discrete case obtained when combining domain decompositions with space-time finite elements.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.