Papers
Topics
Authors
Recent
2000 character limit reached

Preference-based training framework for automatic speech quality assessment using deep neural network (2308.15203v1)

Published 29 Aug 2023 in eess.AS

Abstract: One objective of Speech Quality Assessment (SQA) is to estimate the ranks of synthetic speech systems. However, recent SQA models are typically trained using low-precision direct scores such as mean opinion scores (MOS) as the training objective, which is not straightforward to estimate ranking. Although it is effective for predicting quality scores of individual sentences, this approach does not account for speech and system preferences when ranking multiple systems. We propose a training framework of SQA models that can be trained with only preference scores derived from pairs of MOS to improve ranking prediction. Our experiment reveals conditions where our framework works the best in terms of pair generation, aggregation functions to derive system score from utterance preferences, and threshold functions to determine preference from a pair of MOS. Our results demonstrate that our proposed method significantly outperforms the baseline model in Spearman's Rank Correlation Coefficient.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.