Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GPS-aided Visual Wheel Odometry (2308.15133v1)

Published 29 Aug 2023 in cs.RO

Abstract: This paper introduces a novel GPS-aided visual-wheel odometry (GPS-VWO) for ground robots. The state estimation algorithm tightly fuses visual, wheeled encoder and GPS measurements in the way of Multi-State Constraint Kalman Filter (MSCKF). To avoid accumulating calibration errors over time, the proposed algorithm calculates the extrinsic rotation parameter between the GPS global coordinate frame and the VWO reference frame online as part of the estimation process. The convergence of this extrinsic parameter is guaranteed by the observability analysis and verified by using real-world visual and wheel encoder measurements as well as simulated GPS measurements. Moreover, a novel theoretical finding is presented that the variance of unobservable state could converge to zero for specific Kalman filter system. We evaluate the proposed system extensively in large-scale urban driving scenarios. The results demonstrate that better accuracy than GPS is achieved through the fusion of GPS and VWO. The comparison between extrinsic parameter calibration and non-calibration shows significant improvement in localization accuracy thanks to the online calibration.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.