Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On k-Mer-Based and Maximum Likelihood Estimation Algorithms for Trace Reconstruction (2308.14993v2)

Published 29 Aug 2023 in cs.IT and math.IT

Abstract: The goal of the trace reconstruction problem is to recover a string $x\in{0,1}n$ given many independent {\em traces} of $x$, where a trace is a subsequence obtained from deleting bits of $x$ independently with some given probability $p\in [0,1).$ A recent result of Chase (STOC 2021) shows how $x$ can be determined (in exponential time) from $\exp(\widetilde{O}(n{1/5}))$ traces. This is the state-of-the-art result on the sample complexity of trace reconstruction. In this paper we consider two kinds of algorithms for the trace reconstruction problem. Our first, and technically more involved, result shows that any $k$-mer-based algorithm for trace reconstruction must use $\exp(\Omega(n{1/5}))$ traces, under the assumption that the estimator requires $poly(2k, 1/\varepsilon)$ traces, thus establishing the optimality of this number of traces. The analysis of this result also shows that the analysis technique used by Chase (STOC 2021) is essentially tight, and hence new techniques are needed in order to improve the worst-case upper bound. Our second, simple, result considers the performance of the Maximum Likelihood Estimator (MLE), which specifically picks the source string that has the maximum likelihood to generate the samples (traces). We show that the MLE algorithm uses a nearly optimal number of traces, \ie, up to a factor of $n$ in the number of samples needed for an optimal algorithm, and show that this factor of $n$ loss may be necessary under general ``model estimation'' settings.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.