Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On k-Mer-Based and Maximum Likelihood Estimation Algorithms for Trace Reconstruction (2308.14993v2)

Published 29 Aug 2023 in cs.IT and math.IT

Abstract: The goal of the trace reconstruction problem is to recover a string $x\in{0,1}n$ given many independent {\em traces} of $x$, where a trace is a subsequence obtained from deleting bits of $x$ independently with some given probability $p\in [0,1).$ A recent result of Chase (STOC 2021) shows how $x$ can be determined (in exponential time) from $\exp(\widetilde{O}(n{1/5}))$ traces. This is the state-of-the-art result on the sample complexity of trace reconstruction. In this paper we consider two kinds of algorithms for the trace reconstruction problem. Our first, and technically more involved, result shows that any $k$-mer-based algorithm for trace reconstruction must use $\exp(\Omega(n{1/5}))$ traces, under the assumption that the estimator requires $poly(2k, 1/\varepsilon)$ traces, thus establishing the optimality of this number of traces. The analysis of this result also shows that the analysis technique used by Chase (STOC 2021) is essentially tight, and hence new techniques are needed in order to improve the worst-case upper bound. Our second, simple, result considers the performance of the Maximum Likelihood Estimator (MLE), which specifically picks the source string that has the maximum likelihood to generate the samples (traces). We show that the MLE algorithm uses a nearly optimal number of traces, \ie, up to a factor of $n$ in the number of samples needed for an optimal algorithm, and show that this factor of $n$ loss may be necessary under general ``model estimation'' settings.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube