Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

RobustCLEVR: A Benchmark and Framework for Evaluating Robustness in Object-centric Learning (2308.14899v1)

Published 28 Aug 2023 in cs.CV and cs.AI

Abstract: Object-centric representation learning offers the potential to overcome limitations of image-level representations by explicitly parsing image scenes into their constituent components. While image-level representations typically lack robustness to natural image corruptions, the robustness of object-centric methods remains largely untested. To address this gap, we present the RobustCLEVR benchmark dataset and evaluation framework. Our framework takes a novel approach to evaluating robustness by enabling the specification of causal dependencies in the image generation process grounded in expert knowledge and capable of producing a wide range of image corruptions unattainable in existing robustness evaluations. Using our framework, we define several causal models of the image corruption process which explicitly encode assumptions about the causal relationships and distributions of each corruption type. We generate dataset variants for each causal model on which we evaluate state-of-the-art object-centric methods. Overall, we find that object-centric methods are not inherently robust to image corruptions. Our causal evaluation approach exposes model sensitivities not observed using conventional evaluation processes, yielding greater insight into robustness differences across algorithms. Lastly, while conventional robustness evaluations view corruptions as out-of-distribution, we use our causal framework to show that even training on in-distribution image corruptions does not guarantee increased model robustness. This work provides a step towards more concrete and substantiated understanding of model performance and deterioration under complex corruption processes of the real-world.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.