Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

When hard negative sampling meets supervised contrastive learning (2308.14893v1)

Published 28 Aug 2023 in cs.CV, cs.AI, and cs.LG

Abstract: State-of-the-art image models predominantly follow a two-stage strategy: pre-training on large datasets and fine-tuning with cross-entropy loss. Many studies have shown that using cross-entropy can result in sub-optimal generalisation and stability. While the supervised contrastive loss addresses some limitations of cross-entropy loss by focusing on intra-class similarities and inter-class differences, it neglects the importance of hard negative mining. We propose that models will benefit from performance improvement by weighting negative samples based on their dissimilarity to positive counterparts. In this paper, we introduce a new supervised contrastive learning objective, SCHaNe, which incorporates hard negative sampling during the fine-tuning phase. Without requiring specialized architectures, additional data, or extra computational resources, experimental results indicate that SCHaNe outperforms the strong baseline BEiT-3 in Top-1 accuracy across various benchmarks, with significant gains of up to $3.32\%$ in few-shot learning settings and $3.41\%$ in full dataset fine-tuning. Importantly, our proposed objective sets a new state-of-the-art for base models on ImageNet-1k, achieving an 86.14\% accuracy. Furthermore, we demonstrate that the proposed objective yields better embeddings and explains the improved effectiveness observed in our experiments.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.