Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Domain-based user embedding for competing events on social media (2308.14806v2)

Published 28 Aug 2023 in cs.CY and cs.SI

Abstract: Online social networks offer vast opportunities for computational social science, but effective user embedding is crucial for downstream tasks. Traditionally, researchers have used pre-defined network-based user features, such as degree, and centrality measures, and/or content-based features, such as posts and reposts. However, these measures may not capture the complex characteristics of social media users. In this study, we propose a user embedding method based on the URL domain co-occurrence network, which is simple but effective for representing social media users in competing events. We assessed the performance of this method in binary classification tasks using benchmark datasets that included Twitter users related to COVID-19 infodemic topics (QAnon, Biden, Ivermectin). Our results revealed that user embeddings generated directly from the retweet network, and those based on language, performed below expectations. In contrast, our domain-based embeddings outperformed these methods while reducing computation time. These findings suggest that the domain-based user embedding can serve as an effective tool to characterize social media users participating in competing events, such as political campaigns and public health crises.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: