Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian deep operator learning for homogenized to fine-scale maps for multiscale PDE (2308.14188v1)

Published 27 Aug 2023 in math.NA and cs.NA

Abstract: We present a new framework for computing fine-scale solutions of multiscale Partial Differential Equations (PDEs) using operator learning tools. Obtaining fine-scale solutions of multiscale PDEs can be challenging, but there are many inexpensive computational methods for obtaining coarse-scale solutions. Additionally, in many real-world applications, fine-scale solutions can only be observed at a limited number of locations. In order to obtain approximations or predictions of fine-scale solutions over general regions of interest, we propose to learn the operator mapping from coarse-scale solutions to fine-scale solutions using a limited number (and possibly noisy) observations of the fine-scale solutions. The approach is to train multi-fidelity homogenization maps using mathematically motivated neural operators. The operator learning framework can efficiently obtain the solution of multiscale PDEs at any arbitrary point, making our proposed framework a mesh-free solver. We verify our results on multiple numerical examples showing that our approach is an efficient mesh-free solver for multiscale PDEs.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.