Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario (2308.14119v2)

Published 27 Aug 2023 in cs.CV and cs.LG

Abstract: Semi-Supervised Learning (SSL) is a framework that utilizes both labeled and unlabeled data to enhance model performance. Conventional SSL methods operate under the assumption that labeled and unlabeled data share the same label space. However, in practical real-world scenarios, especially when the labeled training dataset is limited in size, some classes may be totally absent from the labeled set. To address this broader context, we propose a general approach to augment existing SSL methods, enabling them to effectively handle situations where certain classes are missing. This is achieved by introducing an additional term into their objective function, which penalizes the KL-divergence between the probability vectors of the true class frequencies and the inferred class frequencies. Our experimental results reveal significant improvements in accuracy when compared to state-of-the-art SSL, open-set SSL, and open-world SSL methods. We conducted these experiments on two benchmark image classification datasets, CIFAR-100 and STL-10, with the most remarkable improvements observed when the labeled data is severely limited, with only a few labeled examples per class

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Noam Fluss (1 paper)
  2. Guy Hacohen (12 papers)
  3. Daphna Weinshall (31 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.