Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improve in-situ life prediction and classification performance by capturing both the present state and evolution rate of battery aging (2308.13996v1)

Published 27 Aug 2023 in cs.LG, cs.SY, and eess.SY

Abstract: This study develops a methodology by capturing both the battery aging state and degradation rate for improved life prediction performance. The aging state is indicated by six physical features of an equivalent circuit model that are extracted from the voltage relaxation data. And the degradation rate is captured by two features extracted from the differences between the voltage relaxation curves within a moving window (for life prediction), or the differences between the capacity vs. voltage curves at different cycles (for life classification). Two machine learning models, which are constructed based on Gaussian Processes, are used to describe the relationships between these physical features and battery lifetimes for the life prediction and classification, respectively. The methodology is validated with the aging data of 74 battery cells of three different types. Experimental results show that based on only 3-12 minutes' sampling data, the method with novel features predicts accurate battery lifetimes, with the prediction accuracy improved by up to 67.09% compared with the benchmark method. And the batteries are classified into three groups (long, medium, and short) with an overall accuracy larger than 90% based on only two adjacent cycles' information, enabling the highly efficient regrouping of retired batteries.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.