Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Image Coding for Machines with Object Region Learning (2308.13984v1)

Published 27 Aug 2023 in cs.CV

Abstract: Compression technology is essential for efficient image transmission and storage. With the rapid advances in deep learning, images are beginning to be used for image recognition as well as for human vision. For this reason, research has been conducted on image coding for image recognition, and this field is called Image Coding for Machines (ICM). There are two main approaches in ICM: the ROI-based approach and the task-loss-based approach. The former approach has the problem of requiring an ROI-map as input in addition to the input image. The latter approach has the problems of difficulty in learning the task-loss, and lack of robustness because the specific image recognition model is used to compute the loss function. To solve these problems, we propose an image compression model that learns object regions. Our model does not require additional information as input, such as an ROI-map, and does not use task-loss. Therefore, it is possible to compress images for various image recognition models. In the experiments, we demonstrate the versatility of the proposed method by using three different image recognition models and three different datasets. In addition, we verify the effectiveness of our model by comparing it with previous methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.