Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Patch-Grid: An Efficient and Feature-Preserving Neural Implicit Surface Representation (2308.13934v2)

Published 26 Aug 2023 in cs.GR

Abstract: Neural implicit representations are widely used for 3D shape modeling due to their smoothness and compactness, but traditional MLP-based methods struggle with sharp features, such as edges and corners in CAD models, and require long training times. To address these limitations, we propose Patch-Grid, a unified neural implicit representation that efficiently fits complex shapes, preserves sharp features, and handles open boundaries and thin geometric structures. Patch-Grid learns a signed distance field (SDF) for each surface patch using a learnable patch feature volume. To represent sharp edges and corners, it merges the learned SDFs via constructive solid geometry (CSG) operations. A novel merge grid organizes patch feature volumes within a shared octree structure, localizing and simplifying CSG operations. This design ensures robust merging of SDFs and significantly reduces computational complexity, enabling training within seconds while maintaining high fidelity. Experimental results show that Patch-Grid achieves state-of-the-art reconstruction quality for shapes with intricate sharp features, open surfaces, and thin structures, offering superior robustness, efficiency, and accuracy.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.