Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient FPGA-Based Accelerator for Swin Transformer (2308.13922v1)

Published 26 Aug 2023 in cs.AR

Abstract: Since introduced, Swin Transformer has achieved remarkable results in the field of computer vision, it has sparked the need for dedicated hardware accelerators, specifically catering to edge computing demands. For the advantages of flexibility, low power consumption, FPGAs have been widely employed to accelerate the inference of convolutional neural networks (CNNs) and show potential in Transformer-based models. Unlike CNNs, which mainly involve multiply and accumulate (MAC) operations, Transformer involve non-linear computations such as Layer Normalization (LN), Softmax, and GELU. These nonlinear computations do pose challenges for accelerator design. In this paper, to propose an efficient FPGA-based hardware accelerator for Swin Transformer, we focused on using different strategies to deal with these nonlinear calculations and efficiently handling MAC computations to achieve the best acceleration results. We replaced LN with BN, Given that Batch Normalization (BN) can be fused with linear layers during inference to optimize inference efficiency. The modified Swin-T, Swin-S, and Swin-B respectively achieved Top-1 accuracy rates of 80.7%, 82.7%, and 82.8% in ImageNet. Furthermore, We employed strategies for approximate computation to design hardware-friendly architectures for Softmax and GELU computations. We also designed an efficient Matrix Multiplication Unit to handle all linear computations in Swin Transformer. As a conclude, compared with CPU (AMD Ryzen 5700X), our accelerator achieved 1.76x, 1.66x, and 1.25x speedup and achieved 20.45x, 18.60x, and 14.63x energy efficiency (FPS/power consumption) improvement on Swin-T, Swin-S, and Swin-B models, respectively. Compared to GPU (Nvidia RTX 2080 Ti), we achieved 5.05x, 4.42x, and 3.00x energy efficiency improvement respectively. As far as we know, the accelerator we proposed is the fastest FPGA-based accelerator for Swin Transformer.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.