Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving Math Word Problem with Problem Type Classification (2308.13844v1)

Published 26 Aug 2023 in cs.CL

Abstract: Math word problems (MWPs) require analyzing text descriptions and generating mathematical equations to derive solutions. Existing works focus on solving MWPs with two types of solvers: tree-based solver and LLM solver. However, these approaches always solve MWPs by a single solver, which will bring the following problems: (1) Single type of solver is hard to solve all types of MWPs well. (2) A single solver will result in poor performance due to over-fitting. To address these challenges, this paper utilizes multiple ensemble approaches to improve MWP-solving ability. Firstly, We propose a problem type classifier that combines the strengths of the tree-based solver and the LLM solver. This ensemble approach leverages their respective advantages and broadens the range of MWPs that can be solved. Furthermore, we also apply ensemble techniques to both tree-based solver and LLM solver to improve their performance. For the tree-based solver, we propose an ensemble learning framework based on ten-fold cross-validation and voting mechanism. In the LLM solver, we adopt self-consistency (SC) method to improve answer selection. Experimental results demonstrate the effectiveness of these ensemble approaches in enhancing MWP-solving ability. The comprehensive evaluation showcases improved performance, validating the advantages of our proposed approach. Our code is available at this url: https://github.com/zhouzihao501/NLPCC2023-Shared-Task3-ChineseMWP.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube