Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Systematic Study on Quantifying Bias in GAN-Augmented Data (2308.13554v1)

Published 23 Aug 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Generative adversarial networks (GANs) have recently become a popular data augmentation technique used by machine learning practitioners. However, they have been shown to suffer from the so-called mode collapse failure mode, which makes them vulnerable to exacerbating biases on already skewed datasets, resulting in the generated data distribution being less diverse than the training distribution. To this end, we address the problem of quantifying the extent to which mode collapse occurs. This study is a systematic effort focused on the evaluation of state-of-the-art metrics that can potentially quantify biases in GAN-augmented data. We show that, while several such methods are available, there is no single metric that quantifies bias exacerbation reliably over the span of different image domains.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.