Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Heterogeneous Federated Learning via Personalized Generative Networks (2308.13265v2)

Published 25 Aug 2023 in cs.LG

Abstract: Federated Learning (FL) allows several clients to construct a common global machine-learning model without having to share their data. FL, however, faces the challenge of statistical heterogeneity between the client's data, which degrades performance and slows down the convergence toward the global model. In this paper, we provide theoretical proof that minimizing heterogeneity between clients facilitates the convergence of a global model for every single client. This becomes particularly important under empirical concept shifts among clients, rather than merely considering imbalanced classes, which have been studied until now. Therefore, we propose a method for knowledge transfer between clients where the server trains client-specific generators. Each generator generates samples for the corresponding client to remove the conflict with other clients' models. Experiments conducted on synthetic and real data, along with a theoretical study, support the effectiveness of our method in constructing a well-generalizable global model by reducing the conflict between local models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.