Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

EfficientDreamer: High-Fidelity and Robust 3D Creation via Orthogonal-view Diffusion Prior (2308.13223v2)

Published 25 Aug 2023 in cs.CV

Abstract: While image diffusion models have made significant progress in text-driven 3D content creation, they often fail to accurately capture the intended meaning of text prompts, especially for view information. This limitation leads to the Janus problem, where multi-faced 3D models are generated under the guidance of such diffusion models. In this paper, we propose a robust high-quality 3D content generation pipeline by exploiting orthogonal-view image guidance. First, we introduce a novel 2D diffusion model that generates an image consisting of four orthogonal-view sub-images based on the given text prompt. Then, the 3D content is created using this diffusion model. Notably, the generated orthogonal-view image provides strong geometric structure priors and thus improves 3D consistency. As a result, it effectively resolves the Janus problem and significantly enhances the quality of 3D content creation. Additionally, we present a 3D synthesis fusion network that can further improve the details of the generated 3D contents. Both quantitative and qualitative evaluations demonstrate that our method surpasses previous text-to-3D techniques. Project page: https://efficientdreamer.github.io.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com