Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Falcon: Accelerating Homomorphically Encrypted Convolutions for Efficient Private Mobile Network Inference (2308.13189v1)

Published 25 Aug 2023 in cs.CR and cs.AI

Abstract: Efficient networks, e.g., MobileNetV2, EfficientNet, etc, achieves state-of-the-art (SOTA) accuracy with lightweight computation. However, existing homomorphic encryption (HE)-based two-party computation (2PC) frameworks are not optimized for these networks and suffer from a high inference overhead. We observe the inefficiency mainly comes from the packing algorithm, which ignores the computation characteristics and the communication bottleneck of homomorphically encrypted depthwise convolutions. Therefore, in this paper, we propose Falcon, an effective dense packing algorithm for HE-based 2PC frameworks. Falcon features a zero-aware greedy packing algorithm and a communication-aware operator tiling strategy to improve the packing density for depthwise convolutions. Compared to SOTA HE-based 2PC frameworks, e.g., CrypTFlow2, Iron and Cheetah, Falcon achieves more than 15.6x, 5.1x and 1.8x latency reduction, respectively, at operator level. Meanwhile, at network level, Falcon allows for 1.4% and 4.2% accuracy improvement over Cheetah on CIFAR-100 and TinyImagenet datasets with iso-communication, respecitvely.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.