Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Spherical Vision Transformer for 360-degree Video Saliency Prediction (2308.13004v1)

Published 24 Aug 2023 in cs.CV, cs.AI, and cs.MM

Abstract: The growing interest in omnidirectional videos (ODVs) that capture the full field-of-view (FOV) has gained 360-degree saliency prediction importance in computer vision. However, predicting where humans look in 360-degree scenes presents unique challenges, including spherical distortion, high resolution, and limited labelled data. We propose a novel vision-transformer-based model for omnidirectional videos named SalViT360 that leverages tangent image representations. We introduce a spherical geometry-aware spatiotemporal self-attention mechanism that is capable of effective omnidirectional video understanding. Furthermore, we present a consistency-based unsupervised regularization term for projection-based 360-degree dense-prediction models to reduce artefacts in the predictions that occur after inverse projection. Our approach is the first to employ tangent images for omnidirectional saliency prediction, and our experimental results on three ODV saliency datasets demonstrate its effectiveness compared to the state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.