Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A note on solving the envy-free perfect matching problem with qualities of items (2308.12868v1)

Published 24 Aug 2023 in cs.GT

Abstract: In the envy-free perfect matching problem, $n$ items with unit supply are available to be sold to $n$ buyers with unit demand. The objective is to find allocation and prices such that both seller's revenue and buyers' surpluses are maximized -- given the buyers' valuations for the items -- and all items must be sold. A previous work has shown that this problem can be solved in cubic time, using maximum weight perfect matchings to find optimal envy-free allocations and shortest paths to find optimal envy-free prices. In this work, I consider that buyers have fixed budgets, the items have quality measures and so the valuations are defined by multiplying these two quantities. Under this approach, I prove that the valuation matrix have the inverse Monge property, thus simplifying the search for optimal envy-free allocations and, consequently, for optimal envy-free prices through a strategy based on dynamic programming. As result, I propose an algorithm that finds optimal solutions in quadratic time.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)