Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ICU Mortality Prediction Using Long Short-Term Memory Networks (2308.12800v1)

Published 18 Aug 2023 in cs.LG and cs.AI

Abstract: Extensive bedside monitoring in Intensive Care Units (ICUs) has resulted in complex temporal data regarding patient physiology, which presents an upscale context for clinical data analysis. In the other hand, identifying the time-series patterns within these data may provide a high aptitude to predict clinical events. Hence, we investigate, during this work, the implementation of an automatic data-driven system, which analyzes large amounts of multivariate temporal data derived from Electronic Health Records (EHRs), and extracts high-level information so as to predict in-hospital mortality and Length of Stay (LOS) early. Practically, we investigate the applicability of LSTM network by reducing the time-frame to 6-hour so as to enhance clinical tasks. The experimental results highlight the efficiency of LSTM model with rigorous multivariate time-series measurements for building real-world prediction engines.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.