Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Pre-training Code Representation with Semantic Flow Graph for Effective Bug Localization (2308.12773v1)

Published 24 Aug 2023 in cs.SE

Abstract: Enlightened by the big success of pre-training in natural language processing, pre-trained models for programming languages have been widely used to promote code intelligence in recent years. In particular, BERT has been used for bug localization tasks and impressive results have been obtained. However, these BERT-based bug localization techniques suffer from two issues. First, the pre-trained BERT model on source code does not adequately capture the deep semantics of program code. Second, the overall bug localization models neglect the necessity of large-scale negative samples in contrastive learning for representations of changesets and ignore the lexical similarity between bug reports and changesets during similarity estimation. We address these two issues by 1) proposing a novel directed, multiple-label code graph representation named Semantic Flow Graph (SFG), which compactly and adequately captures code semantics, 2) designing and training SemanticCodeBERT based on SFG, and 3) designing a novel Hierarchical Momentum Contrastive Bug Localization technique (HMCBL). Evaluation results show that our method achieves state-of-the-art performance in bug localization.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)