Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Shortest Odd Paths in Undirected Graphs with Conservative Weight Functions (2308.12653v1)

Published 24 Aug 2023 in cs.DS and math.OC

Abstract: We consider the Shortest Odd Path problem, where given an undirected graph $G$, a weight function on its edges, and two vertices $s$ and $t$ in $G$, the aim is to find an $(s,t)$-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the Shortest Odd Path problem had been open for 20 years, and was recently shown to be NP-hard. We give a polynomial-time algorithm for the special case when the weight function is conservative and the set $E-$ of negative-weight edges forms a single tree. Our algorithm exploits the strong connection between Shortest Odd Path and the problem of finding two internally vertex-disjoint paths between two terminals in an undirected edge-weighted graph. It also relies on solving an intermediary problem variant called Shortest Parity-Constrained Odd Path where for certain edges we have parity constraints on their position along the path. Also, we exhibit two FPT algorithms for solving Shortest Odd Path in graphs with conservative weight functions. The first FPT algorithm is parameterized by $|E-|$, the number of negative edges, or more generally, by the maximum size of a matching in the subgraph of $G$ spanned by $E-$. Our second FPT algorithm is parameterized by the treewidth of $G$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.