Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pre-trained Model-based Automated Software Vulnerability Repair: How Far are We? (2308.12533v2)

Published 24 Aug 2023 in cs.SE

Abstract: Various approaches are proposed to help under-resourced security researchers to detect and analyze software vulnerabilities. It is still incredibly time-consuming and labor-intensive for security researchers to fix vulnerabilities. The time lag between reporting and fixing a vulnerability causes software systems to suffer from significant exposure to possible attacks. Recently, some techniques have proposed applying pre-trained models to fix security vulnerabilities and have proved their success in improving repair accuracy. However, the effectiveness of existing pre-trained models has not been systematically analyzed, and little is known about their advantages and disadvantages. To bridge this gap, we perform the first extensive study on applying various pre-trained models to vulnerability repair. The results show that studied pre-trained models consistently outperform the state-of-the-art technique VRepair with a prediction accuracy of 32.94%~44.96%. We also investigate the impact of major phases in the vulnerability repair workflow. Surprisingly, a simplistic approach adopting transfer learning improves the prediction accuracy of pre-trained models by 9.40% on average. Besides, we provide additional discussion to illustrate the capacity and limitations of pre-trained models. Finally, we further pinpoint various practical guidelines for advancing pre-trained model-based vulnerability repair. Our study highlights the promising future of adopting pre-trained models to patch real-world vulnerabilities.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.