Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Parameter-Efficient Transfer Learning for Remote Sensing Image-Text Retrieval (2308.12509v1)

Published 24 Aug 2023 in cs.CV

Abstract: Vision-and-language pre-training (VLP) models have experienced a surge in popularity recently. By fine-tuning them on specific datasets, significant performance improvements have been observed in various tasks. However, full fine-tuning of VLP models not only consumes a significant amount of computational resources but also has a significant environmental impact. Moreover, as remote sensing (RS) data is constantly being updated, full fine-tuning may not be practical for real-world applications. To address this issue, in this work, we investigate the parameter-efficient transfer learning (PETL) method to effectively and efficiently transfer visual-language knowledge from the natural domain to the RS domain on the image-text retrieval task. To this end, we make the following contributions. 1) We construct a novel and sophisticated PETL framework for the RS image-text retrieval (RSITR) task, which includes the pretrained CLIP model, a multimodal remote sensing adapter, and a hybrid multi-modal contrastive (HMMC) learning objective; 2) To deal with the problem of high intra-modal similarity in RS data, we design a simple yet effective HMMC loss; 3) We provide comprehensive empirical studies for PETL-based RS image-text retrieval. Our results demonstrate that the proposed method is promising and of great potential for practical applications. 4) We benchmark extensive state-of-the-art PETL methods on the RSITR task. Our proposed model only contains 0.16M training parameters, which can achieve a parameter reduction of 98.9% compared to full fine-tuning, resulting in substantial savings in training costs. Our retrieval performance exceeds traditional methods by 7-13% and achieves comparable or better performance than full fine-tuning. This work can provide new ideas and useful insights for RS vision-language tasks.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.