Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning the Plasticity: Plasticity-Driven Learning Framework in Spiking Neural Networks (2308.12063v2)

Published 23 Aug 2023 in cs.NE

Abstract: The evolution of the human brain has led to the development of complex synaptic plasticity, enabling dynamic adaptation to a constantly evolving world. This progress inspires our exploration into a new paradigm for Spiking Neural Networks (SNNs): a Plasticity-Driven Learning Framework (PDLF). This paradigm diverges from traditional neural network models that primarily focus on direct training of synaptic weights, leading to static connections that limit adaptability in dynamic environments. Instead, our approach delves into the heart of synaptic behavior, prioritizing the learning of plasticity rules themselves. This shift in focus from weight adjustment to mastering the intricacies of synaptic change offers a more flexible and dynamic pathway for neural networks to evolve and adapt. Our PDLF does not merely adapt existing concepts of functional and Presynaptic-Dependent Plasticity but redefines them, aligning closely with the dynamic and adaptive nature of biological learning. This reorientation enhances key cognitive abilities in artificial intelligence systems, such as working memory and multitasking capabilities, and demonstrates superior adaptability in complex, real-world scenarios. Moreover, our framework sheds light on the intricate relationships between various forms of plasticity and cognitive functions, thereby contributing to a deeper understanding of the brain's learning mechanisms. Integrating this groundbreaking plasticity-centric approach in SNNs marks a significant advancement in the fusion of neuroscience and artificial intelligence. It paves the way for developing AI systems that not only learn but also adapt in an ever-changing world, much like the human brain.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube