Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rotation-Invariant Completion Network (2308.11979v1)

Published 23 Aug 2023 in cs.CV

Abstract: Real-world point clouds usually suffer from incompleteness and display different poses. While current point cloud completion methods excel in reproducing complete point clouds with consistent poses as seen in the training set, their performance tends to be unsatisfactory when handling point clouds with diverse poses. We propose a network named Rotation-Invariant Completion Network (RICNet), which consists of two parts: a Dual Pipeline Completion Network (DPCNet) and an enhancing module. Firstly, DPCNet generates a coarse complete point cloud. The feature extraction module of DPCNet can extract consistent features, no matter if the input point cloud has undergone rotation or translation. Subsequently, the enhancing module refines the fine-grained details of the final generated point cloud. RICNet achieves better rotation invariance in feature extraction and incorporates structural relationships in man-made objects. To assess the performance of RICNet and existing methods on point clouds with various poses, we applied random transformations to the point clouds in the MVP dataset and conducted experiments on them. Our experiments demonstrate that RICNet exhibits superior completion performance compared to existing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)