Emergent Mind

Few-shot Anomaly Detection in Text with Deviation Learning

(2308.11780)
Published Aug 22, 2023 in cs.LG and cs.CL

Abstract

Most current methods for detecting anomalies in text concentrate on constructing models solely relying on unlabeled data. These models operate on the presumption that no labeled anomalous examples are available, which prevents them from utilizing prior knowledge of anomalies that are typically present in small numbers in many real-world applications. Furthermore, these models prioritize learning feature embeddings rather than optimizing anomaly scores directly, which could lead to suboptimal anomaly scoring and inefficient use of data during the learning process. In this paper, we introduce FATE, a deep few-shot learning-based framework that leverages limited anomaly examples and learns anomaly scores explicitly in an end-to-end method using deviation learning. In this approach, the anomaly scores of normal examples are adjusted to closely resemble reference scores obtained from a prior distribution. Conversely, anomaly samples are forced to have anomalous scores that considerably deviate from the reference score in the upper tail of the prior. Additionally, our model is optimized to learn the distinct behavior of anomalies by utilizing a multi-head self-attention layer and multiple instance learning approaches. Comprehensive experiments on several benchmark datasets demonstrate that our proposed approach attains a new level of state-of-the-art performance.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.