Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accelerating Exact Combinatorial Optimization via RL-based Initialization -- A Case Study in Scheduling (2308.11652v1)

Published 19 Aug 2023 in cs.LG and cs.AR

Abstract: Scheduling on dataflow graphs (also known as computation graphs) is an NP-hard problem. The traditional exact methods are limited by runtime complexity, while reinforcement learning (RL) and heuristic-based approaches struggle with determinism and solution quality. This research aims to develop an innovative approach that employs ML for addressing combinatorial optimization problems, using scheduling as a case study. The goal is to provide guarantees in optimality and determinism while maintaining the runtime cost of heuristic methods. Specifically, we introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) RL solver acts as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP. Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $\times$ speed improvements. This was conducted on actual EdgeTPU platforms, utilizing ImageNet DNN computation graphs as input. Additionally, the framework offers improved on-chip inference runtime and acceleration compared to the commercially available EdgeTPU compiler.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)